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Mapping impervious urban surfaces using regression analysis on 

synthetic hyperspectral EnMAP data 

With the envisaged launch of the EnMAP satellite in 2018 high accuracy 

hyperspectral image data of the earth’s surface will be provided creating 

new opportunities for many research fields. Especially for the exploration 

of challenging environments like urban areas with their heterogeneous 

composition this data is expected to be of great value. With regard to 

increasing urbanization all over the world the monitoring and screening of 

impervious materials in urban areas are of particularly high importance. In 

this study we aim at quantifying fractions of impervious surfaces using a 

simulated EnMAP scene of Berlin, Germany, with a spatial resolution of 

30 m. To extract as much information as possible from every pixel we 

used a multiple linear regression approach to identify possible fractions of 

impervious surface materials on each pixel. The basis for training our 

linear regression models are synthetically mixed spectra from 75 

impervious and non-impervious surfaces. A semi-manual principal 

component analysis was performed on training and image data providing 

respectively three comparable principal components that explain over 99% 

of the variances of both datasets. Our multiple linear regression aims at the 

development on one model for each spectral training mixture and the 

application of that model on each image pixel. It turns out that there are 

numerous models that predict a pixel in an adequate way. On an area clip, 

each pixel has been correctly modeled (imperviousness of 0 to 100%) 

from 213 to 1495 different models. Maximum and minimum fractions 

modeled do not allow conclusions about actual rates of imperviousness 

neither. A result validation method would be designed after the 

enhancement of our central analysis method which could include a 

different mixture or modeling approach. 

Keywords: EnMAP, hyperspectral data, imperviousness, principle component 

analysis, PCA, multiple linear regression 



1. Introduction 

According to the UN more than half of the world’s population lives in urban areas 

today. Following current rates of urbanization cities are expected to be a home to more 

than two thirds of mankind in 2050 [14]. Therefore a more detailed analysis of urban 

structures and surface characteristics is needed for a deeper understanding of the 

functioning of this special kind of human-environment-interaction. As the impervious 

urban surface is emerging more and more as a major indicator of the environmental 

quality [15] a special emphasis is laid on its mapping. However, research on this topic is 

often connected to field surveys that are both time consuming and too expensive for 

essential regular updates. Even if the growing field of remote sensing techniques offers 

a chance to provide information on the properties of urban surfaces instead [7] urban 

areas are highly challenging for remote sensing data analysis. Compared to natural 

environments, the high spectral diversity of different materials in combination with 

restricted spatial resolution of sensors leads to the need to explore sub-pixel information 

[8].  

In this study we aimed at quantifying fractions of impervious surfaces using 

multiple linear regression analyses on synthetically generated EnMAP training data. A 

principle component analysis (PCA) is used to reduce data complexity as a PCA is 

legitimately the most popular dimension reduction technique for hyperspectral data 

[4,5]. 

In contrast to us using a combination of a linear regression and a PCA there are 

different methods of spectral mixture analysis (SMA) for subpixel information. Besides 

regular linear SMAs based on linear equation systems and alternatively fixed or variable 

amounts of endmembers and image or pixelwise approaches, the multiple endmember 

SMA (MESMA) is a very common technique. It is a pixelwise linear unmixing 



approach based on a pool of known endmembers and is, e.g., used in [11] and [7]. Also 

appealing are support vector machines (SVM) and support vector regressions (SVR) 

due to their capability to work even with limited training data [6,7,8]. As these methods 

are broadly used many researchers have published enhancements on SVM especially 

focusing on using SVM on simulated EnMAP data [1].   

2. Study area and data 

Our study region consists of an approximate area of 6 km in east-west and 23 km in 

north-south direction comprising the south-western part of the German capital, Berlin, 

and adjacent rural areas of Brandenburg (Fig. 1). Our project is based on three data sets 

resulting from [7]. 

Resulting maps for imperviousness will be deduced from synthetic satellite data 

of the German hyperspectral Environmental Mapping and Analysis Program (EnMAP) 

presumably launched in 2018. Source imagery for data simulation originates from 

hyperspectral airborne iamgery taken 2009 by the HyMap sensor that offers 128 

spectral bands from 440 nm to 2500 nm [2]. The simulated EnMAP image features 111 

bands and a spatial resolution 30 m x 30 m. 

Model training is based on a set of training data including 2106 artificial 

mixtures of 75 (39 impervious and 54 non-impervious surfaces including intra-class 

mixtures) different surface spectra, respectively mixed in steps of 20%. Table 1 presents 

a list of all materials predefined in [9] and identified after an adapted classification 

scheme by [12]. That list of materials underlines the broad range of urban surface types, 

which is, in combination with small-scale structures, a challenge for remote sensing. 

Validation data consists in a block wise high resolution reference map by the 

Berlin Urban and Environmental Information System and the results of [7] and will find 

its way into the study depending on our model outcomes. 



3. Methods 

Our project is realized using open source software provided by [13] and complementary 

packages for statistical computing specified in the code annex. 

The first step of our study consists in the reduction of data complexity using a 

principal component analysis (PCA). Since the number of spectral bands corresponds to 

the number of predictor variables in our linear regression models, we will reduce the 

image’s 111 bands to a manageable number of bands that still explain a considerable 

part of the image variance (Fig. 2). 

The central idea of the following multiple linear regression approach is that one 

respective multiple linear model can be established for any of the 2106 (39 * 54) 

spectral mixtures of surfaces. Any of those models is able to predict surface fractions 

for any pixel of our imagery. The challenge is to find out which of the 2106 models 

predicts the surface material fraction best on a pixelwise basis. Knowing the index of 

the respective best model we can deduce information about each pixel’s surface 

features. 

3.1 Reduction of data complexity (Principal Component Analysis) 

Hyperspectral sensors offer a high dimensionality in data. This can be advantageous for 

analyzing complex processes on the earth’s surface allowing to benefit from a high level 

of spectral detail. On the other hand, that level of detail can massively increase 

computation time considering that in addition, there is a redundancy in data through 

high band correlations. A principle component analysis transforms correlated data into a 

new set of uncorrelated synthetic components explaining the same information. That 

transformation is based on a transformation matrix built from the eigenvectors of a 

correlation matrix of all input variables in order to minimize correlations between the 



different variables. The transformation matrix contains rotation values for each variable 

and each component. Components are calculated by the sum of multiplying each 

rotation factor with each original data [10]. 

In our case, the original data consists of 111 bands resulting in 111 new 

components. We first transform our training data assuming that it is the perfect data for 

our analysis, because it has been synthetically created. We then extract the rotation 

matrix of that principal component analysis in order to transform our simulated EnMAP 

image. The goal is that both datasets have comparable components. This approach is 

possible because the endmember spectra of our training data originate from the EnMAP 

image [7]. 

3.2 Multiple linear regression development 

A multiple linear regression model is a regression model with more than one predictor 

variable. It is characterized by an intercept and coefficients for each predictor variable. 

In contrast to a simple linear regression, the choice of predictor variables and their 

interactions is crucial. Higher-order terms might also be included. Linear regressions 

underlay several conditions, such as constant variances over time or constant error 

probability during measurements. The challenge is to find the best model fit with the 

least possible complexity. Performing a multiple linear regression model in R, 

parameters are estimated by the method of least squares [3,10]. 

Since our study is based on remote sensing data, the distribution of variance and 

measurement error probability is negligible as a factor or constraint. Our approach aims 

at determining the best model for each pixel amongst all models of spectral training data 

mixtures, whereas our selection of first components is our set of predictor variables and 

the fraction of the first material in our training data is our response variable. Creating 

models out of our training data results in perfect linear models with no residuals, since 



our training data is synthetic and linearly mixed. The best model is the one that is able 

to predict fractions as our response variable between 0% and 100%, i.e. that all 

predictor variables are able to locate the fraction variable on a more-dimensional 

hyperplane with a plausible fraction of impervious surface. 

3.3 Fraction analysis 

In a final step, we will analyze how many models can predict fractions of 

imperviousness and if there is one best model. We will map the number of matching 

models as well as fraction statistics of that number of models. In case that there is one 

model that predicts the fractions best on a pixel basis we can make a statement about the 

materials existing within that pixel. 

4. Methods 

4.1 Reduction of data complexity (Principal Component Analysis) 

We performed an uncentered and unscaled principal component analysis on our training 

data set, since all spectral data are already scaled and comparable. The first three of our 

111 principal components explained 99.62% of the variance in our data (Fig. 3).  As 

expected, correlations between principal components are negligible (Table 2).  

Conducting a new automated principal component analysis on our image data 

would have led to the identification of different principal components, since 

eigenvectors and loadings were different, too. We use the automatically derived rotation 

matrix of the principal component analysis performed on our training data in order to 

manually create the same principal components on our image data. Our first image 

component is, thus: 

pca.berlin.enmap.pc1 = sum(berlin.enmap * as.vector(pca.training.rotation[,1])) 



Our assumption is that correlations between the three principal components of 

our image are similarly low and that they explain a similar proportion of variance. 

However, correlations between the image’s components are not ignorable (Table 3). 

The presentation of cumulative proportions of variance shows, though, that the 

same three components explain again more than 99% of our data variance (Fig. 4). 

4.2 Multiple linear regression development  

The algorithm for our multiple linear regression development is based on a loop that 

performs every possible model on every pixel iteratively. It fills a result raster image 

containing information on the number of models per pixel that are adequate models as 

well as the minimum and the maximum fraction predicted. Its idea is presented using 

commented pseudo code (Table 4). 

Our three score layers that indicate how many models were adequate for this 

pixel and both minimum and maximum fractions are used for analysis. The calculated 

fractions can be interpreted as fractions of imperviousness, because they give 

information on the fractions of the underlying classes of our training data. If a pixel’s 

count information is 1, than there is one single and best model for that pixel. 

4.3 Fraction analysis 

The following figures display different aspects of a selected clip within our study area 

near Bundesplatz, Berlin. Fig 5a shows our study area as a Google Earth aerial image, 

whereas Fig. 5b is the same area as a simulated EnMAP data image. The area features a 

Berlin living environment with a green belt including a lake in the western part of the 

image (west of sports grounds). The central road in east-west direction is part of an 

urban motorway. Rooftops consist of red clay and dark shale roofs. Most structures 

remain identifiable on the simulated EnMAP image despite of its low spatial resolution. 



The result image on valid model counts (Fig. 5c) shows that each pixel is far 

away from having a single and best model. However, some structures of the aerial 

image are recognizable. Pixels representing streets and water seem to have a lower 

number of matching models (starting at 213), other structures offer up to 1495 models 

that predict imperviousness between 0 and 100%. 

The model for the minimum value modeled per pixel always predicts an 

imperviousness rate of 0, whereas maximum values vary between 86% and 100%.  

Though, there is no shape of the aerial image recognizable, even if maxima might be 

lower in the green belt and the garden plots in the south-west of the clipped area (Fig. 

5d and 5e). 

Since none of the pixels offer a model count that is next to manageable, we give 

up the step of validating our results. We would first need to enhance our approach since 

until now, results are close to being meaningless with regard to our research question. 

5. Discussion 

Our study contributed to researching sub-pixel information on hyperspectral EnMAP 

imagery in heterogeneous urban areas. We use principal component analysis on 

synthetically generated training spectra for data reduction followed by a multiple linear 

regression analysis modeling fractions of imperviousness.  

5.1 Principal component analysis 

As shown in chapter 3.1 the automatic reduction of training data complexity leads to 

suitable results featuring low correlations. Data variance is explained by only three 

principal components. Manual application of the PCA’s rotation matrix on the EnMAP 

scene, however, results in higher correlations. Nevertheless, only three components 

explain most of the data variance again.  



In order to reduce processing complexity, data reduction is, in general, a useful 

and necessary tool. Still, high correlation values of our manipulated PCA (as we use the 

rotation matrix from a different PCA) might have a negative impact on the following 

steps.  

5.2 Multiple linear regression analysis 

Our approach of a simple and comprehensible multiple linear regression analysis in 

order to achieve subpixel information might be useful in general and for a more limited 

set of data. However, despite the reduced data complexity the computing time for a 

large amount of multiple linear regression models is a non-negligible factor. 

Furthermore, it is uncertain whether this approach is able to find one best model for 

each pixel at all. Spectral profiles of synthetic mixtures of fractions are maybe too 

similar and, as a result, many models are capable of predicting reasonable fraction 

values. A positive aspect of our method is the possibility to intervene as necessary into 

the algorithm in contrast to a black-box-approach with predefined functions.  

We identify three possible ways to improve the study’s results. The use of fewer 

surface material classifications (e.g. by combining different classes in groups) would 

imply less models and thus less model matches. As our study reveals too many classes 

may produces redundancies and increase the uncertainty of the approach.  

A second way could consist of considering all 111 spectral bands instead of a 

selected number of principal components. The expected effect is that spectral 

similarities within training data are reduced and fewer models are assumed to predict 

adequate pixel fractions.  

The problem of high computing time is due to the fact that our algorithm iterates 

2106 models over about 180,000 pixels. This could be approached by a model pre-

selection. In a first step the residuals between a pixel’s spectrum and both pure surface 



spectra (0% and 100%) of each training data set are summed up. Then only those 

models with the lowest residual values are tested on the respective pixel.  

5.3 Further propositions 

Processing our analysis with Rstudio seems to be one reason for high computing times 

as this program does not originally support the use of multi-core processors. Though, 

installing further packages for Rstudio or switching to another programming language 

could possibly solve this problem.  

One approach that would offer another possibility to validate the outcomes of 

this study includes further model classification and combination. Adjoining the linear 

regression all models adequate for one pixel are evaluated and divided into groups 

regarding the surface materials involved. Presumably many models of the same surface 

type (e.g. Tree Nr. 4) would fit the same pixel thus giving additional information about 

its texture.  

The use of support vector regression (SVR) or support vector machine (SVM) is 

also possible for this kind of survey following [7] and [8]. These methods would be 

especially valuable to use the full potential of hyperspectral data. 
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Table 1. List of considered materials for analyses [9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Correlation matrix of the training data 

 

 

 

 

Table 3. Correlation matrix of the EnMAP data 

 

 

 

 

Group Class Nr of 

spectra 

Roof Red clay tile 4 

 Red cement tile 3 

 Bitumen 5 

 Brown roof tile 1 

 Brown roof shingle 1 

 White roof material 

(polyethylene) 

1 

 White roof material 

(unknown) 

1 

 Zinc roof material 1 

Pavement Asphalt 4 

 Concrete 2 

Grass Grass (intensively manicured) 2 

 Grass (extensively 

manicured) 

1 

 Grass (dry) 2 

Tree Deciduous tree 7 

Other Tartan 1 

 Railtrack (concrete sleepers) 1 

 Railtrack (wooden sleepers) 1 

 Sand (playground) 1 

 Soil 1 

 Water 1 

 PC 1 PC2 PC3 

PC1 1.00 0.17 0.02 

PC2 0.17 1.00 0.00 

PC3 0.02 0.00 1.00 

 PC 1 PC2 PC3 

PC1 1.00 -0.37 -0.46 

PC2 -0.37 1.00 0.63 

PC3 -0.46 0.63 1.00 



Table 4. Idea of our multiple linear regression development 

 

  

for (any pixel from 1 to 12636 in steps of 6)  

 

 { 

        subs = subset(rows i to i+5) 

        fit = fit(predict fractions from PC1 +      

PC2 + PC3 in subs) 

 

                for (any pixel in the enmap 

image) 

                { 

                a = prediction(fit) 

                if (a is between 0 and 100) 

                        { 

                        Count++ 

                        Update minFractions 

                        Update maxFractions 

                        } 

                } 

 } 

Our training data consists of 2106 

models represented in blocks of 6 

artificial mixtures. 

 

One model is based on one subset. 

Train model 

 

 

Apply model on every pixel of our image 

 

Predict temporary fraction value 

If the prediction turns out that the model 

is adequate 

Increase model count 

And update min and max fractions if 

necessary! 

 



Figure 1. Study area in western Berlin, Germany [9] 

Figure 2. Process chart of this study’s methods 

Figure 3. Variance of the training data explained by the PCA 

Figure 4. Variance of the EnMAP data explained by the PCA 

Figure 5a. Aerial imagery by Google Earth 

Figure 5b. Simulated EnMAP data 

Figure 5c. Maximum fractions of imperviousness 

Figure 5d. Minimum fractions of imperviousness 

Figure 5e. Count of valid models 




